Stringent Specificity in the Construction of a GABAergic Presynaptic Inhibitory Circuit
نویسندگان
چکیده
GABAergic interneurons are key elements in neural coding, but the mechanisms that assemble inhibitory circuits remain unclear. In the spinal cord, the transfer of sensory signals to motor neurons is filtered by GABAergic interneurons that act presynaptically to inhibit sensory transmitter release and postsynaptically to inhibit motor neuron excitability. We show here that the connectivity and synaptic differentiation of GABAergic interneurons that mediate presynaptic inhibition is directed by their sensory targets. In the absence of sensory terminals these GABAergic neurons shun other available targets, fail to undergo presynaptic differentiation, and withdraw axons from the ventral spinal cord. A sensory-specific source of brain derived neurotrophic factor induces synaptic expression of the GABA synthetic enzyme GAD65--a defining biochemical feature of this set of interneurons. The organization of a GABAergic circuit that mediates presynaptic inhibition in the mammalian CNS is therefore controlled by a stringent program of sensory recognition and signaling.
منابع مشابه
GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons
We characterize an inhibitory circuit motif in the Drosophila olfactory system, parallel inhibition, which differs from feedforward or feedback inhibition. Excitatory and GABAergic inhibitory projection neurons (ePNs and iPNs) each receive input from antennal lobe glomeruli and send parallel output to the lateral horn, a higher center implicated in regulating innate olfactory behavior. Ca(2+) i...
متن کاملBDNF locally potentiates GABAergic presynaptic machineries: target-selective circuit inhibition.
Inhibitory neurotransmission is critical for neuronal circuit formation. To examine whether inhibitory neurotransmission receives target-selective modulation in the long term, we expressed the cDNA of brain-derived neurotrophic factor (BDNF), which has been shown to induce the augmentation of GABAergic synapses in vivo and in vitro, in a small population of cultured hippocampal neurons. At 48 h...
متن کاملSensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord
Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory...
متن کاملPresynaptic modulation by somatostatin in the rat neostriatum is altered in a model of parkinsonism.
Somatostatin (SST) is a peptide synthesized and released by a class of neostriatal local GABAergic interneurons, which, to some extent, are in charge of the feedforward inhibitory circuit. Spiny projection neurons (SPNs) make synapses with each other via their local axon collaterals, shaping the feedback inhibitory circuit. Both inhibitory circuits, feedforward and feedback, are related through...
متن کاملP102: The Association of the Anti-GAD Antibodies to the Neurological Conditions
Glutamic acid decarboxylase (GAD) is an enzyme which converts the glutamic acid to the neurotransmitter gamma-amino butyric acid (GABA). GABA is an inhibitory neurotransmitter that inhibits or weakens the neuronal stimulations. Presynaptic GABAergic neurons in the central neurons system (CNS) and the cells in the islets of Langerhans in the pancreas generate GAD. There are two isoforms of GAD n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 139 شماره
صفحات -
تاریخ انتشار 2009